Robust portfolio optimization: a conic programming approach
نویسندگان
چکیده
The Markowitz Mean Variance model (MMV) and its variants are widely used for portfolio selection. The mean and covariance matrix used in the model originate from probability distributions that need to be determined empirically. It is well known that these parameters are notoriously difficult to estimate. In addition, the model is very sensitive to these parameter estimates. As a result, the performance and composition of MMV portfolios can vary significantly with the specification of the mean and covariance matrix. In order to address this issue we propose a one-period mean-variance model, where the mean and covariance matrix are only assumed to belong to an exogenously specified uncertainty set. The robust mean-variance portfolio selection problem is then written as a conic program that can be solved efficiently with standard solvers. Both second order cone program (SOCP) and semidefinite program (SDP) formulations are discussed. Using numerical experiments with real data we show that the portfolios generated by the proposed robust mean-variance model can be computed efficiently and are not as sensitive to input errors as the classical MMV’s portfolios.
منابع مشابه
Robustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملRobustness in portfolio optimization based on minimax regret approach
Portfolio optimization is one of the most important issues for effective and economic investment. There is plenty of research in the literature addressing this issue. Most of these pieces of research attempt to make the Markowitz’s primary portfolio selection model more realistic or seek to solve the model for obtaining fairly optimum portfolios. An efficient frontier in the ...
متن کاملPrimal and dual robust counterparts of uncertain linear programs: an application to portfolio selection
This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...
متن کاملWorst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach
Classical formulations of the portfolio optimization problem, such as mean-variance or Value-at-Risk (VaR) approaches, can result in a portfolio extremely sensitive to errors in the data, such as mean and covariance matrix of the returns. In this paper we propose a way to alleviate this problem in a tractable manner. We assume that the distribution of returns is partially known, in the sense th...
متن کاملRisk optimization with p-order conic constraints: A linear programming approach
The paper considers solving of linear programming problems with p-order conic constraints that are related to a certain class of stochastic optimization models with risk objective or constraints. The proposed approach is based on construction of polyhedral approximations for p-order cones, and then invoking a Benders decomposition scheme that allows for efficient solving of the approximating pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 52 شماره
صفحات -
تاریخ انتشار 2012